TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. The Experience of the Atomic Bombings</td>
<td>3</td>
</tr>
<tr>
<td>A. The attack and damage</td>
<td>3</td>
</tr>
<tr>
<td>1. The attack</td>
<td>3</td>
</tr>
<tr>
<td>2. Hiroshima</td>
<td>5</td>
</tr>
<tr>
<td>3. Nagasaki</td>
<td>9</td>
</tr>
<tr>
<td>B. General effects</td>
<td>15</td>
</tr>
<tr>
<td>1. Casualties</td>
<td>15</td>
</tr>
<tr>
<td>2. Flash fires</td>
<td>17</td>
</tr>
<tr>
<td>3. Other injuries</td>
<td>17</td>
</tr>
<tr>
<td>4. Radiation disease</td>
<td>18</td>
</tr>
<tr>
<td>5. Morale</td>
<td>20</td>
</tr>
<tr>
<td>6. The Japanese decision to surrender</td>
<td>22</td>
</tr>
<tr>
<td>III. How the Atomic Bombs Work</td>
<td>24</td>
</tr>
<tr>
<td>A. The nature of the explosion</td>
<td>24</td>
</tr>
<tr>
<td>B. Heat</td>
<td>25</td>
</tr>
<tr>
<td>C. Radiation</td>
<td>25</td>
</tr>
<tr>
<td>D. Blast</td>
<td>28</td>
</tr>
<tr>
<td>E. The atomic bomb compared with other weapons</td>
<td>28</td>
</tr>
<tr>
<td>IV. Scenarios</td>
<td>30</td>
</tr>
<tr>
<td>A. The danger</td>
<td>36</td>
</tr>
<tr>
<td>B. What we can do about it</td>
<td>38</td>
</tr>
<tr>
<td>1. Shelters</td>
<td>38</td>
</tr>
<tr>
<td>2. Detrimentation</td>
<td>41</td>
</tr>
<tr>
<td>3. Civilian defense</td>
<td>41</td>
</tr>
<tr>
<td>4. Active defense</td>
<td>43</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td>43</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

The available facts about the power of the atomic bomb as a military weapon lie in the story of what it did at Hiroshima and Nagasaki. Many of these facts have been published, in official and unofficial form, but mingled with distortions or errors. The United States Strategic Bombing Survey, therefore, in partial fulfillment of the mission for which it was established, has put together in these pages a fairly full account of just what the atomic bombs did at Hiroshima and Nagasaki. Together with an explanation of how the bomb achieved these effects, this report states the extent and nature of the damage, the casualties, and the political repercussions from the two attacks. The basis is the observation, measurement, and analysis of the Survey's investigators. The conjecture that is necessary for understanding of complex phenomena and for applying the findings to the problems of defense of the United States is clearly labeled.

When the atomic bombs fell, the United States Strategic Bombing Survey was completing a study of the effects of strategic bombing on Germany's ability and will to resist. A similar study of the effects of strategic bombing on Japan was being planned. The news of the dropping of the atomic bomb gave a new urgency to this project, for a study of the air war against Japan clearly involved new weapons and new possibilities of concentration of attack that might qualitatively or even change the conclusions and recommendations of the Survey as to the effectiveness of air power. The directors of the Survey, therefore, decided to examine exhaustively the effects of the atomic bombs, in order that the full impact on Japan and the implications of their results could be confidently analyzed. Teams of experts were selected to study the scenes of the bombings from the special points of emphasis of physical damage, civilian defense, morale, casualties, community life, utilities and transportation, various industries, and the general economic and political repercussions. In all, more than 110 men—engineers, architects, fire experts, economists, doctors, photographers, draftsmen—participated in the field study at each city, over a period of 30 weeks from October to December, 1945. Their detailed studies are now being published.

In addition, close liaison was maintained with other investigating units. Cooperation was received from, and extended to, the following groups:

The Joint Commission for the Investigation of the Atomic Bomb in Japan.
The British Mission to Japan.
The Naval Technical Mission to Japan.

Special acknowledgment is due to the medical groups of the Joint Commission, whose data and findings have been generously made available to the Survey. On medical aspects of the bombings, the Joint Commission was the chief fact-finding group; it will present its definitive report in the near future. In other fields, however—particularly the study of physical damage and the impact on community life—the Survey collected its own data and is the primary source.
HIROSHIMA—from the top of the Red Cross Hospital looking northwest. Frame buildings recently erected.
II. THE EFFECTS OF THE ATOMIC BOMBINGS

A. THE ATTACKS AND DAMAGE

1. The attacks.—A single atomic bomb, the first weapon of its type ever used against a target, exploded over the city of Hiroshima at 8:15 on the morning of 6 August 1945. Most of the industrial workers had already reported to work, but many workers were errant and nearly all the school children and some industrial employees were at work in the open on the program of building removal to provide firebreaks and dispense valuables to the countryside. The attack came 15 minutes after the “all clear” had been sounded from a previous alert. Because of the lack of warning and the population's indifference to small groups of planes, the explosion came as an almost complete surprise, and the people had not taken shelter. Many were caught in the open, and most of the rest in flimsily constructed homes or commercial establishments.

The bomb exploded slightly northwest of the center of the city. Because of this accuracy and the flat terrain and circular shape of the city, Hiroshima was uniformly and extensively devastated. Practically the entire densely populated northern portion of the city was leveled by blast and fire. A “firestorm,” a phenomenon which has occurred infrequently in other conflagrations, developed in Hiroshima fire springing up almost simultaneously over the wide flat area around the center of the city due to air currents. All the fire promptly overrode the natural ground wind, which had a velocity of only about 5 miles per hour. The “fire-storm” attained a maximum velocity of 50 to 55 miles per hour 2 to 3 hours after the explosion. The “fire-storm” and the symmetry of the built-up center of the city gave a roughly circular shape to the 10-mile radius which was almost completely incinerated.

The surprise, the collapse of many buildings, and the configuration contributed to an unprecedented casualty rate. Seventy to eighty thousand people were killed, or missing and presumed dead, and an equal number were injured. The magnitude of casualties is set in relief by a comparison with the Tokyo fire raid of 9-10 March 1945, in which, though nearly 30 square miles were destroyed, the number killed was no larger, and fewer people were injured.

At Nagasaki, 3 days later, the city was scarcely more prepared, though vague reference to the Hiroshima disaster had appeared in the newspaper of 8 August. From the Nagasaki Prefectural Report on the bombing, something of the shock of the explosion can be inferred.

The day was clear with not very much wind—an ordinary summer day. The single wave of continuous air raid on the city’s population and the activity of theummer had raised some air raid precautions. Previously, a general alert had been sounded at 6:46, with a raid alert at 6:20; this was canceled at 4:58, and the slumber of the people was disturbed by a great fixation of relief.

The city remained on the warning alert, but when two B-29s were again sighted coming in the raid signal was not given immediately. The bomb was dropped at 11:02 and the raid signal was given a few minutes later, at 11:06. Thus only about 400 people were in the city’s named shelters, which were adequate for about 10 percent of the population.

When the atomic bomb exploded, an intense flash was observed first, as though a huge amount of magnesium had been ignited, and the seven-gate house with white smoke. At the same time as the center of the explosion, a shock wave of air pressure came in very fast, and a swirling blue wave was formed. Houses beyond this area were torn down, and houses to the north were hit. The people of Nagasaki, even those who lived on the outer edge of the blast, all felt as though they had received a direct hit, and the whole city suffered damage such as would have resulted from a direct hit everywhere by ordinary bombs.

The area where the damage was most severe, was almost completely wiped out and for a short while after the explosion no reports came out of that area. People who were in comparatively damaged areas reported their condition under the impression that they had received a direct hit. If such a great amount of damage could be wrecked by a near miss, then the power of the atomic bombs is substantially great.
NAGASAKI . . . "like a graveyard with not a tombstone standing . . ." Nagasaki Prefecture Rekuri.
In Nagasaki, on fire storm alone, and the un-
urted terms of the city confined the maximum in-
ity of damage to the valley over which the
bombers exploded. The area of nearly complete de-
volution was thus much smaller; only about 1.9
square miles. Casualties were few; less between
1,000 and 10,000 were killed, and about the same
number injured. People in the tunnel shelters
were not exposed; unless exposed in the entrance
left.
The difference in the totals of destruction to
area and property at the two cities suggests the
importance of the special circumstances of lay-
out and construction of the cities, which affect the
outcome of the bombings and must be considered
in evaluating the effects of various atomic bombs.
In addition, the nature and history of each city
will influence the nature of the damage and its
organization at such.

Hiroshima—The city of Hiroshima is lo-
ated on the broad fan-shaped delta of the Ota
river, whose 7 mouths divide the city into islands
which project forlornly into Hiroshima Bay of
the Inland Sea. These mouths of the river for-
ished excellent harbors for a city that is other-
wise flat and only slightly above sea level. A
greatly developed bridge system, with 81 important
gates, joined the islands. A single kilome-
ter hill in the eastern part of the city, about one-
half mile long and rising to an elevation of
11 feet, offered some natural protection to structures
in the eastern side opposite the point of fall of
the bomb. Otherwise, the city was unfortified en-
ough to withstand the spreading energy from the bomb.
The city boundary extends to some low hills to
the west and northwest and embraces 28.26 square
miles, only 12 of which were built up. Seven
more miles were densely or moderately built up,
the remainder being occupied by sparsely built-up
agricultural lands, storage, and transportation areas, veg-
table farms, water courses, and wooded hills
outside. In the central area, or systematic separa-
tion of commercial, industrial, and residential
areas, there were few functional distinctions. The main commercial district was loc-
ated in the center of the city, and with the adjoin-
ing Chugoku Regional Army Headquarters
constituted the greater portion of the central island.
The residential areas and military barracks over-
looked and surrounded this central area. The
bulk of the industries was located on the perime-
ter of the city, either on the southern ends of
the islands (where the Hiroshima airport was
also located) or to the east of the city. The 6
square miles of densely built-up area in the heart
of the city—residential, commercial, and mili-
tary—contained three-fifths of the total popu-
lation. If there were, as seems probable, about
240,000 people in the city at the time of the attack,
the density in the congested area must have been
about 55,000 per square mile. Five completed
evacuation programs and a sixth then in progress
had reduced the population from its wartime peak
of 380,000.

Hiroshima (and in Nagasaki also) the dwell-
ings were of wood construction; about one-half
were one story and the remainder either one and
one-half or two stories. The roof coverings were
mostly hard-burnt black tile. There were no
necessary division walls, and large groups of dwellings
clustered together. The type of construction, com-
posed of antiquated fire-fighting equipment
and inadequately trained personnel, afforded en-
ough to prevent a high possibility of conflagration.
Many wood-framed industrial buildings were of
poor construction by American standards.
The principal points of weakness were the extremely
small tenons, the inadequate tenon joints and the
inadequate or poorly designed lateral bracings.
Reinforced concrete-framed buildings showed a
striking lack of uniformity in design and in quality
of materials. Some of the construction details
(reinforcing rods, for example) were often poor,
and much of the concrete was definitely weak;
thus some reinforced concrete buildings col-
lapsed and suffered structural damage when within
100 feet of ground zero, and some interior wall
painting was demolished even up to 3,280 feet.
(For convenience, the term "ground zero" will be
used to designate the point on the ground directly
beneath the point of detonation, or "air zero.”) Other
buildings, however, were constructed for
more strongly than is required by normal build-
ing codes in America, to resist earthquakes. Fur-
thermore, construction regulations in Japan have
specified since the 1923 earthquake that the roof
must safely carry a minimum load of 30 pounds
per square foot whereas American requirements
do not normally exceed 20 pounds per square foot
for similar types. Though the regulation was not
always followed, this extra strong construc-
tion was encountered in some of the buildings near
ground zero at Hiroshima, as undoubtedly ac-
counts for their ability to withstand atomic bomb
pressure without structural failures. Nearly 7 percent of the residential units had been torn down to make firebreaks.

Hiroshima before the war was the seventh largest city in Japan, with a population of over 450,000, and was the principal administrative and commercial center of the southwestern part of the country. As the headquarters of the Second Army and of the Chugoku Regional Army, it was one of the most important military command stations in Japan, the site of one of the largest military supply depots, and the foremost military shipping point for both troops and supplies. Its shipping activities had virtually ceased by the time of the attack, however, because of sinkings and the mining of the Inland Sea. It had been relatively unimportant industrially before the war, ranking only twelfth, but during the war new plants were built that increased its significance. These facilities were not concentrated, but spread over the outskirts of the city; this location, we shall see, accounts for the slight industrial damage.

The impact of the atomic bomb shattered the normal fabric of community life and disrupted the organizations for handling the disaster. In the 30 percent of the population killed and the additional 30 percent seriously injured were included corresponding proportions of the civic authorities and rescue groups. A mass flight from the city took place, as persons sought safety from the conflagration and a place for shelter and food. Within 24 hours, however, people were streaming back by the thousands in search of relatives and friends and to determine the extent of their property loss. Roof blocks tend to be set up along all routes leading into the city, to keep,columned and unauthorized people out. The bulk of the de-housed population found refuge in the surrounding countryside; within the city the food supply was short and shelter virtually nonexistent.

On 7 August, the commander of the Second Army assumed general command of the countermeasures, and all military units and facilities in the area were mobilized for relief purposes. Army buildings on the periphery of the city provided shelter and emergency hospitals, space, and disposed Army supplies supplemented the slight amount of food and clothing that had escaped destruction. The need for gasoline could be made available. Surviving civilians assisted; although casualties in both groups had been heavy, 199 policemen and over 2,000 members of the Civilian Defense Corps reported for duty on 7 August.

The state of medical facilities and personnel dramatically illustrates the difficulties facing authorities. Of more than 100 doctors in Hiroshima before the attack, over 50 percent were casualties and only about 30 physicians were able to perform their normal duties a month after the blast. Out of 1,700 nurses, 1,541 were killed or injured. Though some stocked supplies had been dispersed, many were destroyed. Only three out of 24 civilian hospitals could be used, and two large Army hospitals were rendered unusable. Those within 3,000 feet of ground zero were totally destroyed, and the mortality rate of the occupants was practically 100 percent. Two large hospitals of reinforced concrete construction were located 4,000 feet from ground zero. The basic structure remained erect but there was such severe interior damage that neither was able to resume operation as a hospital for some time and the casualty rate was approximately 90 percent, due primarily to falling plaster, flying glass, and fire. Hospitals and clinics beyond 7,000 feet, though often remaining standing, were badly damaged and contained many casualties from flying glass or other missiles.

With such elimination of facilities and personnel, the lack of care and rescue activities at the time of the disaster is understandable; still, the eyewitness account of Father Siemens6 shows how this lack of first-aid contributed to the seriousness of casualties.

6 German-born Jesuit professional at Joetsu University, Tokyo, in the Hiroshima area when the bomb fell,
HIROSHIMA before and after bombing.
Area around ground zero.
1,000 feet circles.
E. A. F. Thorne
reports that 30 hours elapsed before any organized rescue parties were observed. In Hiroshima, only 10 pieces of fire-fighting equipment were available for fighting the conflagration; three of them were destroyed. However, it is unlikely that any public fire department in the world, even without damage to equipment or casualties to personnel, could have prevented development of a configuration in Hiroshima, or contained it with success at more than a few locations along its periphery. The total fire damage would not have been much different.

All utilities and transportation services were disrupted over varying lengths of time. In most cases, however, the demand fell off even more precipitously than the available supply, and where the service was needed it could be restored at a minimal level. Thus, through railroad service was possible on 8 August, only 2 days after the attack, when fire trucks still had to be used to pump water into the locomotives because of insufficient water pressure. Electric power from the general network was available in most of the surviving parts of the city on 7 August, and only one plant, the Engineering Division of Mitsubishi Heavy Industries, was harmed in its recovery by the inability to obtain sufficient power for several weeks.

The water reservoir, which was of reinforced concrete and earth-covered, was undamaged; it was nearly 2 miles from the blast center. However, 200,000 breaks of pipe connections in buildings and dwellings were caused by blast and fire effects. No underground pipes were crushed and no leaks resulted from blast as a direct cause, though several leaks in underground mains resulted from falling debris. Pressure in the city center dropped to zero because of the blast and the damage to a 16- and a 14-inch water main where they crossed damaged bridges. Six sewer pumping stations were destroyed by fire and blast within a radius of 1 mile. The remaining eight stations were only slightly damaged, but no effort was made to repair them. Water tables rose at flood periods and lands behind sewer systems were inundated.

Construction losses, in terms of time, were severe. In the urban area, 705 buildings were destroyed by the primary blast and fire. Of the 2,000 railroad employees, about 200 railroad employees were killed, but by 20 August, 14 days after the attack, 80 percent of the employees were at work.

The electric power transmission and distribution system was wrecked; only power equipment of rugged construction, such as transformers, survived the blast and fire within the devastated areas. Instruments were damaged beyond repair, and switches, switchyard insulators, cables, and cooper lines were rendered unusable. The telegraph system was approximately 99 percent damaged, and no service was restored until 15 August 1945.

Industry in the center of the city was effectively wiped out. Though small workshops numbered several thousand, they represented only one-fourth of the total industrial production of Hiroshima, since many of them had only one or two workers. The bulk of the city's output came from large plants located on the outskirts of the city; one-half of the industrial production came from only five firms. Of these larger companies, only one suffered more than superficial damage. Of their working force, 94 percent were injured. Since electric power was available, and materials and working force were not destroyed, plants ordinarily responsible for nearly three-fourths of Hiroshima's industrial production could have resumed normal operations within 30 days of the attack had the war continued.

Immediately after the attack, the presence of these nearly intact industries spurred countermeasures in an effort to retain for the nation's war effort the potential output of the city. The prefectural governrnent issued a proclamation on 7 August, calling for "a rehabilitation of the stricken city and an aroused fighting spirit to exterminate the devilish Americans." To prevent the spread of rumors and brace morale, 20,000 out-of-town newspapers were brought in daily to replace the destroyed local paper. With the surrender, however, reconstruction took on a slower tempo. On 16 August, regular rationing was resumed. Care of the injured and disposal of corpses remained urgent, but other steps were few.

By 1 November, the population of Hiroshima was back to 117,000. The city required complete rebuilding. The entire heart, the main administrative and commercial, as well as residential section, was gone. In this area only about 50 buildings, all of reinforced concrete, remained standing. All of those suffered blast damage and all save about a dozen were almost completely gutted by fire; only 8 could be used without major re-
pairs. These burnt-out structural frame rose impressively from the ashes of the burned-over section where occasional piles of rubble or twisted steel skeletons marked the location of brick or steel frame structures. At greater distances light steel frame and brick structures remained undamaged. Blast damage to wood-frame buildings and to residences extended well beyond the burned-over area, gradually becoming more erratic and spotty as distances were reached where only the weakest buildings were damaged, until in the outer portions of the city only minor disturbances of the tile roof or heaving of glass were visible. The official Japanese figures summed up the building destruction at 62,000 out of a total of 90,000 buildings in the urban area, or 69 percent. An additional 6,000 or 6.6 percent were severely damaged, and most of the others showed glass breakage or disturbance of roof tile. These figures show the magnitude of the problem facing the survivors.

Despite the absence of sanitation measures, no epidemics are reported to have broken out. In view of the lack of medical facilities, supplies, and personnel, and the disruption of the sanitary system, the escape from epidemics may seem surprising. The experience of other bombed cities in Germany and Japan shows that this is not an isolated case. A possible explanation may lie in the disinfecting action of the extensive fires. In later weeks, disease rates rose, but not sharply.

Nagasaki—Nagasaki is located on the best natural harbor of western Kyushu, a spacious inlet in the mountainous coast. The city is a highly congested urban pattern extending for several miles along the narrow shelves and up the valleys opening out from the harbor. Two rivers, divided by a mountain spur, form the two main valleys into which the city lies: the Urakami River, in whose basin the city lies; the Urakami River, in whose basin the city is bombarded, running into the harbor from the NE, and the Nanshio River, running from the NE. This mountain spur and the irregular layout of the city effectively reduced the area of destruction.

The railroad residential and commercial districts are interlaced in these two river basins. The large industrial plants stretch up the west shore of the bay and up the Urakami Valley. Though the metropolitan area of the city is officially about 35 square miles and stretches far into the countryside, the heavily built-up area is confined by the terrain to less than 3 square miles. The greatest population density thus approximated 65,000 per square mile, even after the evacuations.

Despite its excellent harbor, Nagasaki’s commercial importance, though great in previous centuries, had declined in recent years because of the city’s isolated position and the difficulties of transportation through the mountains by inadequate roads and railroad facilities. As a naval base it had been supplanted by Sasebo. Industry gradually increased in importance, primarily under Mitsubishi influence. The four largest companies in the city were the Mitsubishi Shipyards, Electrical Equipment Works, Arms Plant, and Steel Works, employing nearly 65 percent of the city’s labor force. Administratively, Nagasaki was by 1941 of merely local importance despite being the seat of the prefectural government.

Before the atomic bomb fell on September 9, Nagasaki had experienced five small-scale air attacks in the previous 13 months, by an aggregate of 130 planes which dropped a total of 270 tons of high explosive, 18 tons of incendiary, and 20 tons of fragmentation bombs.

Of these, a raid of 1 August 1945 was most effective, with several bombs falling in the Mitsubishi Shipyards and Steel Works. The scale of effect can be roughly measured, however, by comparing the fall of bomb damage with that from the atomic bomb: in all there raids 250 residential buildings and 41 industrial buildings were destroyed or badly damaged. When the atomic bomb fell, Nagasaki was comparatively intact.

Because the most intense destruction was confined to the Urakami Valley, the impact of the bomb on the city as a whole was less surprising than in Hiroshima. In addition, no firestorms occurred; indeed, a shift in wind direction helped control the fires. Medical personnel and facilities were hard-hit, however, as 59 percent of the city’s hospitals and the Medical College were located within 5,000 feet of the center of the explosion, and were completely destroyed. Reinforced concrete buildings within this range, though standing, were completely gutted by fire; buildings of wooden construction were destroyed by fire and blast. The mortality rate in this group of buildings was between 78 and 96 percent. Exact casualty figures for medical personnel are unknown, but the city seems to have fared better than Hiroshima: 120 doctors were at work on 1 November, about one-half of the prewar roster.
GROUND ZERO AT NAGASAKI—Before and after bombing.
Occupants were undoubtedly high: 500 out of 800 medical students at the Nagasaki Medical College were killed and most of the others injured; and of the 20 faculty members, 12 were killed and 4 others injured.

Utilities and services were again disrupted. Both gas plants were destroyed; and the replacement time was estimated at several months. Though the basic water supply was not affected, thousands of residential feeder-line breaks were supplemented by eight breaks on a 14-inch main line and four breaks where another main line crossed a bridge. Electric power distribution and transmission systems were effectively destroyed in the area of heaviest destruction, but power could be supplied to the other parts of the city almost immediately.

Shipping was virtually unaffected. Trolley service was halted both by the interruption in power supply and by damage to street cars. Nagasaki is at the end of a railroad spur line. The major damage was sustained by track and railroad bridges. The rails buckled intermittently for a distance of 5,000 to 7,000 feet from ground zero, at points where burning debris set fire to wooden cross ties. Three bridges were displaced; rails were distorted and the tracks had to be completely rebuilt. The railroad stations were completely destroyed by blast and fire and the electric signal system was severely damaged. Rolling stock was slightly damaged, primarily by fire. Although the damage to equipment was not extensive, it was severe enough to entail traffic for 30 hours, during which time sufficient emergency repair work was performed to permit resumption of limited traffic.

Control of relief resources was in the hands of the prefecture. The sequence of clearance and repair activities illustrates the activities that were carried on.

The city’s repair facilities were completely disorganized by the atomic bomb, so that with the single exception of shutting off water to the affected areas to repair were made to roads, bridges, water mains, or transportation installations by city forces. The prefecture took full responsibility for such restoration as was accomplished, delegating to the scattered city help in the task of assessing in relief of victims. There were only 3 survivors of 11 employees of the street car company, and later in the middle of November 1945 no cars were running. A week after the explosion, the water works officials made an effort to supply water to persons attempting to live in the bomb-out area, but the leakage was so great that the effort was abandoned. It fell to the prefecture, therefore, to institute recovery measures even in those streets normally the responsibility of the city. Of the entire public works construction group covering the Nagasaki city area, only three members appeared for work and a week was required to locate and notify other survivors. On the morning of 20 August, police rescue units and workers from the Kawanami shipbuilding works began the imperative task of clearing the Ozora Nagasaki pike, which was impassable.

A path 45 feet wide was cleared despite the intense heat from smoldering fires, and by 22 August had been widened to permit two-way traffic. No trucks; only rakes and shovels, were available for clearing the streets, which were filled with cinders, bricks, stones, corrugated iron, machinery, plaster, and stoves. Streets damaged by blast and not by fire were littered with wood. Throughout the devastated area, all wounded had to be carried by stretcher, since no motor vehicles were able to proceed through the cluttered streets for several days. The plan for debris removal required clearance of a few streets leading to the main highway; but there were frequent delays caused by the heat of smoldering fires and by calls for relief work. The debris was simply raked and shovelled off the streets. By 30 August the job was considered complete. The streets were not materially damaged by the bomb nor were the surfaces or the abutments of the concrete bridges, but many of the wooden bridges were totally or partially destroyed by fire.

Under the circumstances—five, flight of native families, destruction of official records, mass cremation—identification of dead and the accurate count of casualties was impossible. As at Hiroshima, the census of the year made rapid disposal of bodies imperative, and mass cremation and mass burial were resorted to in the days immediately after the attack. Despite the absence of sanitary measures, no epidemics broke out here. The cemetery rates rose from 35 per 100,000 to 225 per 100,000. A census taken on 1 November 1946 found a population of 125,000 in the city. At Nagasaki, the scale of destruction was greater than at Hiroshima, though the actual area destroyed was smaller because of the terrain and the point of fall of the bomb. The Nagasaki Prefectural Report describes vividly the impress of the bomb on the city and its inhabitants.
RESIDENTIAL AREA, NAGASAKI. Shaded by hills, one congested area survived (area featured in the foreground).

Another, 1,000 feet northeast of ground zero was reduced to rubble.
Within a radius of 1 kilometer from ground zero, many untrained steel almost instantaneously from the tremendous heat; concrete and other structures were warped, cracked, and shattered; and fires broke out. The women and children of the workers and visitors of the Mitsubishi Steel Works were also killed by the fire. The buildings of the steel mills were damaged, and those of the blast furnaces were destroyed. In addition, the structures of the blast furnaces were also damaged. The blast furnaces of the blast furnaces were completely destroyed by the blast.

Outside a radius of 2 kilometers and within a radius of 4 kilometers from ground zero, many untrained steel were left intact, with the exception of the structures of the steel mills which were damaged. The blast furnaces of the steel mills were also damaged. The blast furnaces of the steel mills were also damaged. The blast furnaces of the steel mills were also damaged.

While the configuration with its uniformly burned-out area caught the attention ofc Hachinohe, the blast effects with their resemblance to the aftermath of a hurricane, were most striking at Negahama. Concrete buildings had their sides facing the blast store in the box. Long lines of steel-framed factory buildings, over a mile from ground zero, leaned their skeletons away from the explosion. Blast resistant objects such as telephones poles leaned away from the center of the explosion. The surrounding hills were torn down within considerable areas. Although there was no general configuration, fires contributed to the total damage in nearly all concrete structures. Evidence of primary fire is much more frequent than in Hiroshima.

Some parts of the city were protected by hills, more than one-half of the residential units escaped serious damage. Of the 62,000 residential units in the city on 1 August, 14,110 or 22.3 percent were completely destroyed (by Japanese count) and 3,541 or 5.6 percent were half damaged or destroyed; many of the remaining units suffered superficial or minor damage. In 580 nonresidential buildings in the building area of Negahama, which the Survey studied, almost 69 percent of the usable floor area was destroyed or structurally damaged. Only 12 percent was undamaged, the rest suffering superficial or minor damage.

The survival of a higher percentage of the buildings than distinguished Nagasaki from Hiroshima, so also, on the other hand, does the damage to factories. In Negahama, only the Mitsubishi Dockyards among the major industries were noted enough from the explosion to escape serious damage. The other three Mitsubishi plants, which were responsible together with the dockyards for over 50 percent of the industrial output of the city, were seriously damaged. The Arms Plant and the Steel Works were in the main area of damage. Plant officials estimated that 50 percent of the value of the former and 75 percent of the value of the latter were destroyed. Survey investigators considered the two plants to be 50 percent destroyed. The Mitsubishi Electric Works were on the edge of the main area of destruction, but suffered 20 percent structural damage.

One or two paragraphs from the report of the commanding officer of Saugus Naval District will illustrate the sort of damage done to industrial installations. Of two plants of the Mitsubishi Arms Works, he reports:

With the exception of the normal workshops and the half-underground workshops, the Osaka and Kobe Match Plants were completely destroyed by fallout. Concrete concrete structures in those plants were severely damaged, doors caved in, roofs caved in, roofs caved in. The Osaka Plant was nearly completely destroyed in fire. Taking both plants together, 50 percent of the machinery installed was damaged. In the Osaka Plant, from 20 to 50 percent of the machinery can be used again; in the Kobe Match Plant only 10 to 20 percent of the machinery can be used in the future.

Of the Mitsubishi Steel Works:

Plant structures have been completely destroyed, except for the frame and foundation. The frame remained, and most buildings were destroyed. Only a few of the remaining units suffered superficial or minor damage. In 580 nonresidential buildings in the building area of Negahama, which the Survey studied, almost 69 percent of the usable floor area was destroyed or structurally damaged. Only 12 percent was undamaged, the rest suffering superficial or minor damage.

The survival of a higher percentage of the buildings than distinguished Nagasaki from Hiroshima, so also, on the other hand, does the damage to factories. In Negahama, only the Mitsubishi Dockyards among the major industries were noted enough from the explosion to escape serious damage. The other three Mitsubishi plants, which were responsible together with the dockyards for over 50 percent of the industrial output of the city, were seriously damaged. The Arms Plant and the Steel Works were in the main area of damage. Plant officials estimated that 50 percent of the value of the former and 75 percent of the value of the latter were destroyed. Survey investigators considered the two plants to be 50 percent destroyed. The Mitsubishi Electric Works were on the edge of the main area of destruction, but suffered 20 percent structural damage.
THE TREMENDOUS PRESSURE OF THE BLAST bent the steel frame of the Mitsubishi Steel Works (about 2,400 feet south of ground zero at Nagasaki) away from the explosion. Nagasaki Medical University Hospital in background. (Photo taken 25 August 1945 by SMHCC.)
In this uncertain situation, estimates of casualties have generally ranged between 100,000 and 150,000 for Hiroshima, and between 50,000 and 100,000 for Nagasaki. The Survey believes the total at Hiroshima to have been between 70,000 and 80,000, with an equal number injured; at Nagasaki over 35,000 dead and somewhat more than that injured seems the most plausible estimate.

Most of the immediate casualties did not differ from those caused by incendiary or high-explosive raids. The outstanding difference was the presence of radiation effects, which became unmistakable about 9 weeks after the bombing. At the time of impact, however, the causes of death and injury were flash burns, secondary effects of blast and falling debris, and burns from blinding buildings. No records are available that give the relative importance of the various types of injury, especially for those who died immediately after the explosion. Indeed, many of these people undoubtedly died several times over, theoretically, since each was subjected to several injuries, any one of which would have been fatal. The Hiroshima Prefectural Health Department placed the proportion of deaths from burns (flash or flame) at 60 percent, from falling debris at 39 percent, and from other injuries at 10 percent; it is generally agreed that burns caused at least 30 percent of the initial casualties. Of those who died later, an increasing proportion succumbed to radiation effects.

The seriousness of these radiations effects may be measured by the fact that 50 percent of the traced survivors of the immediate explosion who were within 4,000 feet suffered from radiation disease. Colonel Stafford Warren, in his testimony before the Senate Committee on Atomic Energy, estimated that radiation was responsible for 7 to 8 percent of the total deaths in the two cities. Most medical investigators who spent some time in the areas feel that this estimate is far too low; it is generally felt that no less than 15 to 20 percent of the deaths were from radiations. In addition, there were an equal number who were casualties who survived, as well as uncounted thousands who probably were affected by the gamma rays but not enough to produce definite illness.

A plausible estimate of the importance of the various causes of death would range as follows:

- Flash burns, 90 to 95 percent.
- Other injuries, 6 to 10 percent.
- Radiation sickness, 15 to 20 percent.
PROTECTION AGAINST RADIANT HEAT. This patient (photographed by Japanese 2 October 1945) was about 6,500 feet from ground zero when the cup struck him from the left. His cap was insufficient to protect the top of his head against kinetic burns.
If we examine the nature of the casualties under each group of causes we find familiar and unusual effects.

Flash burns.—The flash of the explosion, which was extremely brief, emitted radiant heat traveling at the speed of light. Flash burns thus followed the explosion instantaneously. The fact that relatively few victims suffered burns of the eyeballs should not be interpreted as an indication that the radiant heat followed the flash, or that time was required to build up maximum heat intensity. The explanation is simply that the structure of the eye is more resistant to heat than an average human skin, and near-ground zero the covered position of the eyeball offered protection from the overhead explosion. Peak temperatures acted only momentarily.

Survivors in the two cities stated that people who were in the open directly under the explosion if the bomb were so severely burned that the skin was charred dark brown or black and that they died within a few minutes or hours.

Among the survivors, the burned areas of the skin showed evidence of burns almost immediately after the explosion. At first there was marked edema, and other evidence of thermal burns appeared within the next few minutes or hours, depending on the degree of the burn. Unaffected areas healed promptly without any unusual clinical features, according to the Japanese physicians who attended the cases. American medical observers noted only a tendency to formation of excesseous tissue, which could be satisfactorily explained as the result of mutilation and the large degree of secondary infection that complicated healing of the burns. There were also a few instances of burns healing with contractures and limitation of the mobility of certain joints, such as the elbows or knees. In many instances, these primary burns of minor nature were completely healed before patients developed evidence of radiation effects.

Because of the brief duration of the flash wave and the shielding effects of almost any object—trees and clothing as well as buildings—there are many interesting cases of protection. The direct heat came in a direct line like light, so that the area burned corresponded to this directed section. Persons whose sides were toward the explosion often showed definite burns of both sides of the back while the hollow of the back escaped. People in buildings or boxes were apparently burned only if directly exposed through the windows. The most striking instance was that of a man writing before a window. His hands were seriously burned but his exposed face and neck suffered only slight burns due to the angle of entry of the radiant heat through the window.

Flash burns were largely confined to exposed areas of the body, but on occasion would occur through varying thicknesses of clothing. Generally speaking, the thicker the clothing the more likely it was to give complete protection against flash burns. One woman was burned over the shoulders except for a T-shaped area about one-fourth inch in breadth; the T-shaped area corresponded to an increased thickness of the clothing from the arm of the garment. Other people were burned through a single thickness of kimono but were unscathed or only slightly affected underneath the lapel. In other instances, skin was burned beneath tightly fitting clothing but was unburned beneath loosely fitting portions. Finally, white or light-colored reflected heat and afforded some protection; people wearing black or dark-colored clothing were more likely to be burned.

Other injuries.—Because of the combination of factors at the area near the center of the explosion, the casualty effects of blast are hard to single out. If it is remembered that even directly under the explosion, people were several hundred feet away from the air-burst, it will be easier to understand why true blast effects were relatively rare. Only toward the periphery of the affected zone was the blast effect lateral and likely to throw people violently against buildings, and at the periphery the intensity of the blast had fallen off sharply. Comparatively few instances were reported of ears or legs being torn from the body by flying debris. Another indication of the rarity of over-pressure in the vicinity of affected areas is the severity of ruptured eardrums. Among 106 victims examined by the Japanese in Hiroshima on 11 and 12 August, only three showed ruptured eardrums; a study done in October at the Osaka hospital near Nagasaki revealed that only two of 62 cases had ruptured eardrums. Only at Nagasaki were there reports of over-pressure in the shock wave. Some of the dead were said by survivors to have had their abdomen ruptured and intestines protruding; others were reported to have protruding eyes and tongues, and to have looked as if they had screamed. Through check by Allied investigators discounted these stories as evidence of di-

...iect blast effects; the normal effects of blast are internal hemorrhage and crushing. These external signs point to injuries from debris rather than blast.

Injuries produced by falling and flying debris were much more numerous, and naturally increased in number and severity as the center of the affected area. The collapse of the buildings was sudden, so that thousands of people were pinned beneath the debris. Many were able to extricate themselves or received aid in escaping, but large numbers succumbed either to their injuries or to the fear that they could be extricated. The timeliness of Japanese residential construction should not be allowed to obscure the dangers of collapse: though the walls and partitions were light, the houses had heavy roof timbers and heavy roof tiles. Flying glass from panels also caused a large number of casualties, even up to 15,000 feet from ground zero.

The number of burns from secondary fires was slight among survivors, but it was probable that a large number of the deaths in both cities came from the burning of people caught in buildings. Eyewitness accounts agree that many fatalities occurred in this way, either immediately or as a result of the lack of care for those who did extricate themselves with serious burns. There are no references, however, to people in the streets succumbing either to heat or to carbon monoxide as they did in Tokyo or in Hamburg, Germany. A few burn victims resulted from clothing set alight by the flash wave, but in most cases people were able to beat out such fires without serious injury to the skin.

Radiation illness.—The radiation effects upon survivors resulted from the gamma rays liberated by the fission process rather than from induced radioactivity or the lingering radioactivity of deposits on buildings, clothing, and other objects. Doses of radioactivity have been detected on buildings in those areas where fission products were deposited by scavenging, but the degree of activity in those areas was insufficient to produce casualties. Similarly, induced radioactivity from the interaction of neutrons with matter caused no authenticated fatalities. But the effects of gamma rays—here used in a general sense to include all penetrating high-frequency radiations and neutrons that caused injury—are well established, even though the Allies had no observers in the affected area for several weeks after the explosions.

Our understanding of radiation casualties is not complete. In part the difficulty is in our basic knowledge of how radiation affects animal tissue. In the words of Dr. Robert Stone of the Manhattan Project, "The fundamental mechanism of the action of radiation on living tissues has not been understood. All methods of treatment have therefore been symptomatic rather than specific. For this reason, studies into the fundamental nature of the action of radiation have been carried on to some extent, the limitation being that it was unlikely that significant results could be obtained during the period of war." According to the Japanese, those individuals very near the center of the explosion but not affected by flash burns or secondary injuries became ill within 2 or 3 days. Bloody diarrhea followed, and the victims expired, some within 2 to 3 days after the onset and the majority within a week. Autopsies showed remarkable changes in the blood picture—almost complete absence of white blood cells, and deterioration of bone marrow. Membranes of the throat, lungs, stomach, and the intestines showed acute inflammation.

The majority of the radiation cases, who were at greater distances, did not show acute symptoms until 1 to 4 weeks after the explosion, though many felt weak and illines on the following day. After a day or two of mild nausea and vomiting, the appetite improved and the person felt quite well until symptoms recurred at a later date. In the opinion of some Japanese physicians, those who rested or subjected themselves to less physical exertion showed a longer delay before the onset of subsequent symptoms. The first signs of recurrence were loss of appetite, indigestion, and general discomfort. Inflammation of the gums, mouth, and pharynx appeared next. Within 12 to 48 hours, fever became evident. In many instances it reached only 101° Fahrenheit and remained for only a few days. In other cases, the temperature went as high as 104° or 106° Fahrenheit. The degree of fever apparently had no direct relation to the degree of exposure to radiation. Once developed, the fever was usually well sustained, and in those cases terminating fatally it continued high until the end. If the fever subsided, the patient usually showed a rapid disappearance of other symptoms and soon regained his feeling of good health. The other symptoms commonly seen were shortage of white corpuscles, loss of hair, inflammation and gangrene of the gums, inflammation of the mouth and pharynx, ulcer-
of the lower gastro-intestinal tract, small livid spots (petechiae) resulting from escape of blood into the tissues of the skin or mucous membranes, and large hemorrhages of gums, nose and skin.

Loss of hair usually begins about 2 weeks after the bomb explosion, though in a few instances it is reported to have begun as early as 4 to 5 days afterward. The areas involved in the following order of frequency with variations depending on the degree of exposure: scalp, arms, back, pubic region, and eyelashes. Complete baldness was rare. Microscopic study of the hair follicles in these patients who survived after 2 months, however, the hair has commenced to grow. An interesting but unconfirmed report has it that loss of the hair was less marked in persons with grey hair than in those with dark hair.

A decrease in the number of white blood corpuscles in the circulating blood appears to have been a constant accompaniment of radiation disease, even existing in some milder cases without other radiation effects. The degree of leukopenia was probably the most accurate index of the amount of radiation a person received. The normal white blood cell count averages 6,000 to 7,000; leukopenia is indicated by a count of 4,000 or less.

The white blood count in the more severe cases ranged from 1,500 to 5, with almost entire disappearance of the bone marrow. The moderately severe cases showed evidence of degeneration of bone marrow and total white blood counts of 1,500 to 3,000. The milder cases showed white blood counts of 3,500 to 4,500 with more minor degeneration changes in the bone marrow. The changes in the system for forming white blood corpuscles developed later, but were equally severe.

Radiation clearly affected reproduction, though the extent has not been determined. Sterility has been a common finding throughout Japan, especially under the conditions of the last 2 years, but there are signs of an increase in the Hiroshima and Nagasaki areas to be attributed to the radiation. Sperm counts done in Hiroshima under American supervision revealed low sperm counts or complete aspermia for as long as 8 months after the bomb. This was found in males who were within 5,000 feet of the center of the explosion. Cases dying of radiation disease showed clear effects on spermatogenesis. The effects of the bomb on pregnant women are marked, however. Of women in various stages of pregnancy who were within 3,000 feet of ground zero, all known cases have had miscarriages. Even up to 6,000 feet they have had miscarriages or premature infants who died shortly after birth. In the group between 6,000 and 10,000 feet, about one-third have given birth to apparently normal children. Two months after the explosion, the city's total incidence of miscarriages, abortions, and premature births was 25 percent as compared with a normal rate of 6 percent. Since other factors than radiation contributed to this increased rate, a period of years will be required to learn the ultimate effects of mass radiation upon reproduction.

Treatment of victims by the Japanese was limited by the lack of medical supplies and facilities. Their therapy consisted of small amounts of vitamins, liver extract, and an occasional blood transfusion. Allied doctors used penicillin and plasma with beneficial effects. Liver extract seemed to benefit a few patients on whom it was used. It was given in small frequent doses when available. A larger percentage of the cases died of secondary disease, such as septic hemochromatosis or tuberculosis, as a result of lowered resistance. Deaths from radiation began about a week after exposure and reached a peak in 8 to 12 weeks. They had practically ceased to occur after 7 to 8 weeks.

Unfortunately, no exact definition of the killing power of radiation can yet be given, nor a satisfactory account of the size and thickness of concrete or earth that will shield people. From the definitive report of the Joint Commission will come more nearly accurate statements on these matters. In the meanwhile the awesome lethal effects of the atomic bomb and the insidious additional peril of the gamma rays speak for themselves.

There is reason to believe that if the effects of blast and fire had been entirely absent from the bombing, the number of deaths among people within a radius of one-half mile from ground zero would have been almost as great as the actual figures and the deaths among those within 1 mile would have been only slightly less. The principal difference would have been in the time of the deaths. Instead of being killed outright as were most of these victims, they would have survived for a few days or even 3 or 4 weeks, only to die eventually of radiation disease.

These oppositions have vital importance, for
actually in Nagasaki and Hiroshima many people who were protected by structures against blast and fire were not protected against the effect of gamma rays. The complexity of the problem of shelter protection has been increased by this necessity of shielding against radiant heat and gamma rays. Fortunately, earth and concrete will shield against gamma rays, the required thickness varying with the intensity of the rays.

The slow and inadequate treatment of victims by the Japanese probably contributed to the high casualty rate. Many persons could undoubtedly have been saved had facilities, supplies, and personnel been available immediately after the bombings. Probably the number of deaths from the true blast effects, flame burns, or serious injuries from collapsing structures would not have been altered appreciably; generally speaking, these cases either were killed outright or also survived. Many of the flash burn cases could have been saved with tremendous quantities of plasma and parenteral fluids if treatment could have begun within a few hours after the bombing. Probably the most significant results could have been achieved with the radiation cases. With large quantities of whole blood and adequate supportive treatment, possibly 10 to 30 percent of those dying of radiation might have survived. However, it is doubtful that 20 percent of all the deaths resulting from the atomic bomb could have been avoided with the best medical care. A more likely figure is 5 to 8 percent.

2. Hiroshi—As might be expected, the primary reaction to the bomb was fear—uncontrolled terror, strengthened by the sheer horror of the destruction and suffering witnessed and experienced by the survivors. Between one-half and two-thirds of those interviewed in Hiroshima and Nagasaki areas confessed having such reactions, not just for the moment but for some time. As two survivors put it:

"When a plane was seen after that, people would think it was their children. They want to and out so much that they did not have time to eat. They were so scared they could not move.

"After the atomic bomb fell, I just couldn't stop running. I would think, and while running I would always be watching and searching whether an atomic bomb would fall near me.

The behavior of the living immediately after the

3 All U.S. & R. C. R. Hiroshi survivors interviewed for a scientifically selected sample of about 250 persons: 124 from Hiroshi,
and Nagasaki cities, and 126 from the immediately en-
neighboring areas. The age and sex distribution was just as done.

bomings, as described earlier, clearly shows the state of shock that hindered rescue efforts. A Nagasaki survivor illustrates succinctly the mood of survivors:

All I saw was a flash and I felt my body get warm and then I saw everything thing around. My grandmother was sitting on the floor with her head between her knees and she was moaning. I became hysterical using my grandmother's bleeding, and we just ran around without knowing what to do.

I was working at the office. I was walking to a friend at the window. I saw the whole sky in a red flash, then I started. The pieces of the glass hit my back and tore my chest, and I was torn off by the glass. Then I got up and ran to the mountain where the good shelter was.

The two typical impulses were these: Aimless, even hysterical activity or flight from the city to shelter and food.

The accentuated effect of these bombs was not only from the radiation and their crushing power, but also from the feeling of security among the inhabitants of the two cities before the attack. Though Nagasaki had undergone five raids in the previous year, they had not been heavy, and Hiroshima had gone almost untouched until the morning of 5 August 1945. In both cities many people felt that they would be spared, and the various rumors in circulation, supporting such feelings, covered a wide range of wild thoughts. There were so many Christians there, many Japanese-Americans came from Hiroshima, the city was a famous beauty spot—those and other even more fantastic reasons encouraged hope. Other people felt vaguely that their city was being saved for "something big," however.

Such a flattering event could not fail to have its impact on people's ways of thinking. Study of the patterns of belief about the war, before and after the bomb, show this change clarity. Prior to the dropping of the atomic bomb, the people of the two target cities appear to have had fewer misgivings about the war than people in other cities. Responses to post-questions indicate that among Japanese civilians prior to 1 July 1945:

30 percent in the Hiroshima-Nagasaki areas held
74 percent in the other urban areas entertained
doubts about a Japanese victory;
51 percent in Hiroshima-Nagasaki, but
47 percent in other urban areas felt certain
that victory for Japan was impossible;
22 percent in Hiroshima-Nagasaki but
of other urban areas had reached a
point where they felt unable to continue the
war.

Further, 28 percent of the people of Japan as a whole said they had never reached a point where they felt they could not go on with the war, whereas 30 percent of the people in the Hiroshima-Nagasaki areas said they had never reached such a point.

These figures clearly suggest that the will to resist did indeed begin to wane in the "atomic bomb cities" than in Japan as a whole.

There is no doubt that the bomb was the most important influence among the people of these areas in making them think that defeat was inevitable. An additional 28 percent stated that once the atomic bomb was dropped they became convinced that victory for Japan was impossible. An additional 28 percent stated that once the atomic bomb was dropped they became convinced that victory for Japan was impossible.

Admission for the bomb was more frequently expressed than anger. Over one-fourth of the people in the target cities and surrounding areas said they were impressed by its power and by the scientific skill which underlay its discovery and production.

Of greater significance are the reactions of the Japanese people as a whole. The two raids were all-Japanese events and were intended so. The Allied Powers were trying to break the fighting spirit of the Japanese people and their leaders, not just of the residents of Hiroshima and Nagasaki. Virtually all the Japanese people had a chance to react to the bomb though the news had not reached to full spread at the time of the surrender. By the time the interviewing was done, only about 2 percent of the population in rural areas and 1 percent in the cities had not heard of the bomb.

The reactions found in the bombed cities appeared in the country as a whole—fear and terror, anger and hatred against the war, admiration for the scientific achievement—though in each case with less intensity. The effect of the bomb on attitudes toward the war in Japan as a whole was, however, much less marked than in the target cities. While 40 percent of the latter respondents reported defeatist feelings induced by the bomb, 30 percent of those in the islands as a whole attributed such reactions to the news of the bomb. There are at least three possible explanations of this difference. First, the level of confidence was quite low in Japan well before the time of the atomic bombing. Prior to July 26th doubts about a Japanese victory were felt by 75 percent of the population. By the same date 75 percent had become certain that a Japanese victory was impossible, and 75 percent felt that they could not go on with the war. Under these circumstances, the announcement of a new and devastating
weapon was merely an addition to the already eloquent evidence of national weakness. Second, the reaction of those at some distance from the target cities seems to have been blunted by their direct experience with other sorts of misfortunes and hardships, the common phenomena of psychological distance increasing with geographical distance. In Japan as a whole, for example, military losses and failures, such as those at Saipan, the Philippines, and Okinawa, were twice as important as the atomic bomb in inducing certainty of defeat. Other rear areas in Japan as a whole were more than three times as important in this respect. Consumer deprivation, such as food shortages and the attendant malnutrition, were also more important in bringing people to the point where they felt they could not go on with the war.

Third, the lack of understanding of the meaning of the new weapon in areas away from the target undoubtedly limited its demoralizing effect. As distance from the target cities increased, the effectiveness of the bombs in causing certainty of defeat declined progressively:

<table>
<thead>
<tr>
<th>Group of cities</th>
<th>Percent of population evacuated or killed</th>
<th>of total losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hiroshima, Nagasaki</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Cities nearest to target cities</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>Cities near to target cities</td>
<td>12%</td>
<td>12%</td>
</tr>
<tr>
<td>Cities far from target cities</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>Cities furthest from target cities</td>
<td>6%</td>
<td>6%</td>
</tr>
</tbody>
</table>

Only in the nearest group of cities, within 40 miles of Hiroshima or Nagasaki, was there a substantial effect on morale. Were the channels of mass communication as readily available to all the population as they are in the United States and had the use of the bomb received anything like the intense coverage it had here, the effect on continued support of the war would probably have been greater. Something approaching such knowledge, of course, probably would have spread rather widely had the war continued many more weeks, whether sanctioned by the censors or spread by the ever-active rumor channels so common in the country.

It is apparent that the effect of the atomic bombings on the confidence of the Japanese civilian population was remarkably localized. Outside of the target cities, it was subordinate to other demoralizing experiences. The effect which is did have was probably directly due to the number of casualties and the nature of the injuries received. These consequences were in part the result of surprise and the vulnerability of the rear defense system. Properly enforced warnings, precautions, and an emergency care organization of the scale of the bomb's effects might have reduced casualties and, therefore, the effects on morale.

Even in the target cities, it must be emphasized, the atomic bombs did not uniformly destroy the Japanese fighting spirit. Hiroshima and Nagasaki, when compared with other Japanese cities, were not more destructive than the averages. The bombs were tremendous personal catastrophes to the survivors, but rather than mere understanding of the revolutionary threat of the atomic bomb permitted them to use in these personal catastrophes a final blow to Japan's prospects for victory or negotiated peace.

3. The Japanese decision to surrender.—The further question of the effects of the bombs on the morale of the Japanese leaders and their decision to abandon the war is tied up with other factors.

The atomic bomb had more effect on the thinking of Government leaders than on the morale of the rank and file of civilians outside of the target areas. It cannot be said, however, that the atomic bomb convinced the leaders who opposed the peace of the necessity of surrender. The decision to seek ways and means to terminate the war, influenced in part by knowledge of the low state of popular morale, had been taken in May 1945 by the Supreme War Council.

As early as the spring of 1944, a group of former prime ministers and others close to the Emperor had been making efforts toward bringing the war to an end. This group, including such men as Admiral Okada, Admiral Yonai, Prince Konoye, and Maquiski Kido, had been influential in effecting Tojo's resignation and in making Admiral Shimura Prime Minister after Koiso's fall. Even in the Suzuki cabinet, however, agreement was far from unanimous. The Navy Minister, Admiral Yonai, was sympathetic, but the War Minister, General Anami, usually represented the fight-to-the-end policy of the Army. In the Supreme War Council, a sort of inner cabinet, his adherence to that line was further assured by the participation of the Army and Navy chiefs of staff, so that the peace issue this organization was equally divided, with these three opposing the Prime Minister, Foreign Minister, and Navy Minister. At any time military (especially Army) dissatisfaction with the Cabinet might have eventuated at least in its fall and possibly to the "liquidation" of the joint arm.
Thus the problem facing the peace leaders in the Government was to bring about a surrender despite the hesitation of the War Minister and the opposition of the Army and Navy chiefs of staff. This had to be done, moreover, without precipitating counter measures by the Army which would eliminate the entire peace group. This was done ultimately by bringing the Emperor actively into the decision to accept the Potsdam terms. So long as the Emperor openly supported such a policy and could be presented to the country as doing so, the military, which had feared and lived on the idea of complete submission to the Emperor, could not effectively rebel.

A preliminary step in this direction had been taken at the Imperial Conference on 20 June. At this meeting, the Emperor, taking an active part despite his custom to the contrary, stated that he desired the development of a plan to end the war as well as one to defend the home islands. This was followed by a renewal of earlier efforts to get the Soviet Union to intervene with the United States, which were effectively answered by the Potsdam Declaration on 26 July and the Russian declaration of war on 8 August.

The atomic bombings considerably speeded up these political manoeuvres within the Government. This is partly a morale effect, since there is ample evidence that members of the Cabinet were worried by the prospect of further atomic bombings, especially on the remains of Tokyo. The bombs did not convince the military that defense of the home islands was impossible. If their behavior in Government councils is adequate testimony. It did permit the Government to say, however, that no army without the weapon could possibly resist an enemy who had it, thus giving "face" for the Army leaders and not reflecting on the competence of Japanese industrialists or the value of the Japanese soldier. In the Supreme War Council Council voting remained divided, with the war minister and the two chiefs of staff unwilling to accept unconditional surrender. There seems little doubt, however, that the bombing of Hiroshima and Nagasaki weakened their inclination to oppose the peace group.

The peace effort culminated in an Imperial conference on the night of 9 August and continued into the early hours of 10 August, for which the stage was set by the atomic bombs and the Russian war declaration. At this meeting the Emperor, again breaking his customary silence, stated specifically that he wanted acceptance of the Potsdam terms.

Aquip was current in high Government circles at this time that the atomic bomb was the real Kamikaze, since it saved Japan from further useless slaughter and destruction. It is apparent that in the atomic bomb the Japanese found the opportunity which they had been seeking, to break the existing deadlock within the Government over acceptance of the Potsdam terms.
III. HOW THE ATOMIC BOMB WORKS

Out of the stories of Hiroshima and Nagasaki can be built up, detail by detail, the picture of how the atomic bomb works—the different forms of energy given off, the velocity and intensity of each, the sort of effects each has on animate and inanimate objects. In these factors is the real story of what happened at Hiroshima and Nagasaki, for in them dance circumstances are ruled out.

Spectators' accounts, whether of the New Mexico, the Hiroshima, or the Nagasaki explosion, describe similar pictures. At Nagasaki, for example, the bomb exploded at 11:02 with a tremendous flash of blue-white light, like a giant magnesium flare. The flash was accompanied by a rush of heat and was followed by a huge pressure wave and the rumbling sound of the explosion. Curiously enough, this sound was not distinctly noted by those who survived near the center of the explosion, although it was heard as far as 15 miles away.

People on the hillsides in the country at a considerable distance from Nagasaki told of seeing the blue-white and then multicolored flash over the city, followed some seconds later by a tremendous clap, like thunder very close overhead. A huge snow-white cloud shot rapidly into the sky and the scene on the ground was obscured first by a bluish haze and then by a purple-brown cloud of dust and smoke.

The survivors were not aware at the time that a radically new bomb had been used. They were conscious of an explosion of tremendous power, but even the Government had no conception, until President Truman's announcement was broadcast, of the new principle of operation. If we strip our minds of any lingering prejudice that the atomic bomb is supernatural or incomprehensible in its operation, we shall see why its uniqueness was not first recognized.

IV. THE NATURE OF THE EXPLOSION

The atomic bomb works by explosion. An explosion is, in the words of the Smyth report, simply a "sudden and violent release of a large amount of energy in a small region." As do ordinary high explosives, atomic bombs release energy, though on an unprecedented scale. The energy takes three forms (one of which is heat), and all the effects of the bomb can be referred directly to these three kinds of energy. They are:

1. Heat (which is present in other explosions, as the familiar injuries known as "flash burns" on warships illustrate, but ordinarily not at high enough diffused temperature to burn a man or set fire to combustible objects at any considerable distance from the explosion).

2. Radiation (similar to X-rays or to that from radium).

3. Blast or pressure (as from a demolition bomb).

The whole discussion of the effects of the atomic bomb will be phrased in terms of these three kinds of energy. No other more mysterious or immeasurable forces acted; these were all.

These were enough. The energy released in atomic explosion is of such magnitude and from so concentrated a source that it sets entirely new problems in its use or in protection against it. Ordinary burning or explosion is a chemical reaction in which energy is released during the rearrangement of the atoms of the explosive material. In an atomic reaction, however, the identity of the atoms, not simply their arrangement, is changed. The change is more fundamental: in it, matter is transformed into energy. The energy released when a pound of nitroglycerine explodes would, when converted into heat, raise the temperature of 100 pounds of water by 18° F. The explosion of a pound of uranium would produce an equal temperature rise in 2 billion pounds of water! Clearly, only a small part of the mass in the bomb's active core need be transformed to give an explosion of tremendous power.

At the time of the explosion, there was energy given off in the forms of light, heat, gamma radiation, and pressure. The whole range of radiation, indeed, seems to have been present. There were heat radiations in the low frequency band.
B. HEAT

The center of the explosions—several hundred feet above ground—was a ball of fire. Because the radiant heat given off at the explosion easily charred combustible objects while causing so quickly that surfaces not in the direct line of radiation were unaffected, there are clearly marked “shadows” visible where objects were shielded against the heat. By projecting back the sharply defined outlines of these shadows, Japanese and Allied scientists have determined the height and diameter of the fireball. The two fireballs were apparently several hundred feet in diameter. The temperature at their core was virtually inconceivable—millions of degrees centigrade. Even at its edge, the temperature was several thousand degrees; reasoning from the heat effects observed on human beings, babbled roof tile, and combustible materials, Japanese and Allied scientists have placed the figure variously between 3,000° and 9,000° C. Energy given off in heat alone was estimated by Japanese physicists at the astronomical figure of 10^9 calories.

The flash heat was intense enough to cause fires, despite the distance of the fireball from the ground. Clothing ignited, though it could be quickly blown out, telephone poles charred, thatched roofs of homes caught fire. In Hiroshima, the explosion started hundreds of fires almost simultaneously, the most distant of which was found 13,000 feet from ground zero; this, however, probably started when a building with a thatched roof collapsed onto a hot charcoal fire. Fires were started directly by flash heat in such easily ignitable substances as dark cloth, paper, or dry-rotted wood, within about 3,000 feet of ground zero; white-painted, concrete-faced or cement-stuccoed structures reflected the heat and did not ignite. A cedar bark roof and the top of a dry-rotted wooden platform 3,000 feet west of ground zero, were reported to have been ignited by the bomb flash. The majority of initial fires in buildings, however, were started by secondary sources (kitchen charcoal fires, electric short-circuits, industrial process fires, etc.). In Nagasaki, both Japanese and American fire experts agreed that more fires were caused directly than indirectly, in a ratio of 60 to 40. The range of primary fire there is reported to have exceeded 10,000 feet.

Charred telephone poles were discernible for 10,000 feet south and 13,000 feet north of ground zero at Hiroshima, and for 15,000 feet or more at Nagasaki. Bubbling of roof tile occurred at Hiroshima from ground zero out to 4,000 feet, though with only scattered frequency after 2,000 feet. The same phenomenon was reported at Nagasaki, accompanied again by scorching and peeling of granitic rocks, almost a mile from ground zero. A similar bubbled surface was obtained at the National Bureau of Standards by heating a sample of the tile to 1,700° C, for a period of 4 seconds. It was concluded that the explosion of the bomb subjected the tile to a temperature of more than 1,000° for less than 4 seconds.

Persons reported feeling heat on their skin as far away as 24,000 feet. Burns of unprotected skin certainly occurred up to 12,000 to 15,000 feet, and reported up to 18,000 feet—nearly 3 miles. Serious or third-degree burns were suffered by those directly exposed within 4,000 feet, and occasionally as remote as 7,000 feet. In the immediate area of ground zero, the heat charred corpses beyond recognition.

Clothing as well as buildings afforded considerable protection against the flash. Even a bundle of grass or tree leaf was, on occasion, adequate. The implication clearly is that the duration of the flash was less than the time required for the grass or leaf to shrivel. While an accurate estimate is not possible, the duration could hardly have exceeded a fraction of a second.

C. RADIATION

From the chain reaction which produced the mass release of energy in the explosion, a wide
NAGASAKI—Blistered tile found at ground zero.

“Shadows” of hand rail wheel on pole of a gas holder at Hiwada. Radiocind heat intensity burned paint where the heat rays were not obstructed. 6-300 feet from ground zero (Hayama photo).
NEW SHOOTS are appearing on the trunks of a chestnut tree, about 2,500 feet south of ground zero at Nagasaki. 2 months after the attack, even though the leaves were burned and shattered at the time of the explosion (Japanese photo).

TREES SINTERED BY BLAST on a Nagasaki hillside, 2,700 feet southwest of ground zero (Japanese photo).
D. BLAST

The pressure or shock wave travelled out in all directions from the explosion. The blast effects produced were uniform, and essentially those of conventional, large high explosive weapons, though on a much larger scale. Thus, instead of localized effects such as the collapse of a roof truss or wall panel, entire buildings were crushed or distorted as solids.

The blast pressure, as with high explosives, rose almost instantaneously to a peak, declined more slowly, and then fell below atmospheric pressure for a period about three times the period during which it was above atmospheric pressure. The positive phase—that during which the pressure was greater than atmospheric—was of much greater peak pressure than the succeeding, or negative, phase. Short though the positive phase was—probably only slightly longer than a second—it lasted longer than the positive phase of an ordinary bomb. Thus the effect of the atomic bomb on buildings was usually that of a powerful push which shoved buildings over or left them heeling, whereas high explosive bombs strike sharply and much more briefly and tend to punch holes in walls. The duration was also long enough so that almost all building failures came during the positive phase. Comparatively few evidences were found of failures of members during the longer but less intense negative phase; window clusters blew outwards toward the explosion were very rare.

Experiments with high explosives have shown that the face-on peak pressures are approximately two to five times as intense as side-on peak pressures; thus greater damage was inflicted on walls or roofs facing the blast than on similar surfaces parallel to the blast. Near ground zero, the blast struck almost vertically downward. Buildings were crushed if weak, or the roofs were crushed in with little or no damage to the walls. Trunks of trees remained standing, but stripped of their branches; telephone poles pushed further out, also remained erect near the center. Many small buildings were virtually engulfed in the pressure wave and simultaneously crushed from different directions. At somewhat greater distance, both horizontal and vertical components of the blast were appreciable, and buildings suffered damage both to roofs and to walls facing the explosion. At considerable distances, where the blast was travelling
BLAST STRUCK DOWN AND against the rear of the Chibana School. 1,000 feet from
ground zero at Nagasaki, which had been taken over in part for munitions work.
The third story collapsed completely, but the heavy earthquake-resistant structures
protected some machine tools on the first floor from serious damage. Entirely
former parts of a schoolroom did not escape a combination of blast, fire, and debris
destroyed them.
In an almost horizontal direction, damage was predominantly inflicted on walls during the blast. In such cases, the buildings were often completely crushed by the liability of roof truss members to transmit the pressure to the far walls.

Shelling was more important at Nagasaki than at Hiroshima, because of the hills that divided the city. Building restrictions in Japan after the 1923 earthquake limited building heights to 169 feet; thus there was little shielding by buildings from such airburst bombs.

Reflection and diffraction effects were observed. Had the blast travelled in completely straight lines, more buildings would have survived in Nagasaki than actually did. Reflection effects were most clearly observed in the destruction of parapet walls of roofs on the side away from the bomb, where reflection of the blast wave from the roof reinforced the blast impinging on the wall directly. They were also visible in the displacing and cracking of concrete decks of bridges within 1,000 feet of ground zero, where reflection of the blast wave from the water struck the bridges where their resistance was least.

The resistance of buildings depended very largely on their construction, as two examples show.

(a) In the area between 2,000 and 5,000 feet from ground zero at Nagasaki, only 9.5 percent of the floor area of reinforced concrete buildings was destroyed or structurally damaged. Yet in the ring between 4,000 and 5,000 feet from ground zero, 36 percent of such buildings was destroyed or structurally damaged. Careful examination showed that the difference lay solely in design, construction detail, and materials: The bomb detonated over a surface containing the most carefully and strongly built buildings in the city, the majority multistory earthquake-resistant structures. This illustrates more than compensated for the greater intensity of blast. A rapidly diminishing blast was capable of serious damage to weaker buildings farther away, mostly high, single-story industrial buildings, with thin, steel-type, arched roofs.

(b) At both cities, steel-framed buildings with corrugated asbestos walls and roofs suffered less structural damage than those with corrugated iron or sheet-metal walls and roofs. The corrugated asbestos crumpled easily, permitting the blast pressure to equalize itself rapidly around the main framing members, but the steel siding transferred the pressure to the structural members, causing distortion or general collapse.

The limits of blast effects extended 8 miles out, where some glass reportedly shattered in Hiroshima; at the same time, some roof stripping and disturbance of tiles was inflicted at the Japan Steel Co., 4.1 miles from ground zero.

In analyzing the extent of the destruction wrought by the bombs, it is necessary to discriminate between the two cities and between different types of buildings. Equivalent effects are found at Nagasaki over greater areas. Structural damage to reinforced concrete buildings, both earthquake resistant and non-earthquake resistant, occurred within an area of 6.33 square miles at Hiroshima, but at Nagasaki similar severe damage was inflicted in an area of 8.3 square miles.

Severe damage to one-story light steel frame buildings was equally extensive at the two cities: the area was 3.2 square miles at Nagasaki and 3.4 square miles at Hiroshima. Heavy steel frame buildings could be studied only at Nagasaki, where they suffered structural damage over an area of 1.8 square miles.

One-story brick buildings with load bearing walls were severely damaged within an area of 8.3 square miles at Nagasaki, and within an area of 6 square miles at Hiroshima. Multi-story brick buildings, which were studied only at Hiroshima, were severely damaged within an area of 5.8 square miles.

Wood domestic buildings were severely damaged within an area of 7.8 square miles at Nagasaki, and within an area of 6 square miles at Hiroshima. Wood frame industrial and commercial buildings, which were of inferior construction, were severely damaged within 9.0 square miles at Nagasaki, and 8.8 square miles at Hiroshima.

Maximum blast pressures fall off very rapidly as the distance from the detonation increases. In the two bombarded cities, thus, reinforced concrete buildings of good construction were structurally damaged only when within a few hundred feet of ground zero. Indeed, ground zero itself was too distant from air zero for the earthquake-resistant buildings to be collapsed. It is the opinion of the Survey's engineers that at Hiroshima more thorough destruction near ground zero, without significant loss in the scope of destruction, could have been achieved had the bomb been detonated at a lower altitude.
FIRE FRINGE. 8,200 feet from ground zero at Nagasaki, the old police station was completely gutted by fire. Hills protected house on the right from blast, and fire did not spread to them (Japanese photo).

BLAST BUCKLED THE COLUMNS of this wood-frame building beyond the fire fringe at Hiroshima (7,400 feet from ground zero).
WRECKAGE IN NAGASAKI STREETCAR TERMINAL. 1,000 feet north of ground zero. Streetcar in center was thrown about 10 feet by the blast (Japanese photo).

THE HIROSHIMA FIRE DEPARTMENT lost its only aerial ladder truck when the west side main fire station was destroyed by blast and fire, 1,000 feet from ground zero (Japanese photo).
F. THE ATOMIC BOMB COMPARED WITH OTHER WEAPONS

In comparing the atomic bomb with other weapons, it is well to remember the importance of the height at which it exploded. Because of this distance from the targets, the atomic bomb did not exert at any point in Hiroshima or Nagasaki the high instantaneous peak pressures of even small high explosive bombs. For example, a single 100-pound bomb exploding at ground level exerts a higher blast pressure over an area of 1,000 square feet (for about 15 feet around its point of detonation) than did the atomic bomb at any point in either city.

That fact will place comparisons of the radii of effectiveness in a proper perspective. Even at the heights from which the atomic bomb was exploded in Japan, its blast effects were on a new scale because the duration of the blast was long compared to that of high explosive bombs. To take only one example: At Nagasaki, brick buildings suffered structural damage within a radius averaging 2,000 feet from ground zero. Comparable damage would be done by a 300-pound high explosive bomb at ground level for a radius of 50 feet; by a 1,000-pound bomb for 80 feet; by a 1,500-pound bomb for 110 feet; and by a 2,500-pound bomb for 200 feet. A hypothetical 20-ton blockbuster (early 30-ton penetrating bombs have actually been used) could be expected to achieve equivalent damage over a radius of 500 feet. The area of effectiveness of the air-burst atomic bomb against brick buildings thus ranged from 15,000 times as great as that for a 300-pound bomb to 250 times as great as that for the imaginary 20-ton blockbuster.

A simple table shows most strikingly the comparison between the striking forces needed for atomic and conventional weapons. Against the two atomic attacks can be set the data for the most effective single urban attack, that on Tokyo on 9 March 1945, and the average effort and results from the Twentieth Air Force's campaign against Japanese cities.

What stands out from this compilation, even more than the extent of the destruction from a single centrifugally-processed atom bomb, is the unprecedented casualty rate from the combination of heat, blast, and gamma rays from the chain reaction.

On the basis of the known destructiveness of various bombs compared from the war in Europe and the Pacific and from tests, the Survey has estimated the striking force that would have been necessary to achieve the same destruction at Hiroshima and Nagasaki. To cause physical damage equivalent to that caused by the atomic bombs, approximately 1,200 tons of bombs (one-fourth high explosives and three-fourths incendiaries) would have been required at Nagasaki—in the target area. To place that many bombs in the target area, assuming day-light attacks under essentially the same conditions of weather and enemy opposition that prevailed when the atomic bombs were dropped, it is estimated that 1,200 tons of bombs would have had to be dropped at Hiroshima and 300 tons at Nagasaki.

To these bomb loads would have had to be added a number of tons of antipersonnel fragmentation bombs to inflict comparable casualties. This would add about 100 tons at Hiroshima and 90 tons at Nagasaki. The total bomb loads would thus be 5,100 tons at Hiroshima (400 HB, 1,200 EB) and 1,290 tons (375 HB, 925 EB) at Nagasaki. With each plane carrying 18 tons, the striking force required would have been 210 B-29s at Hiroshima and 280 B-29s at Nagasaki.

It should be kept in mind, however, that the area of damage at Nagasaki does not represent the full potential effectiveness of the atomic bomb used there. The damage was limited by the small size of the rather isolated section of the city over which the bomb exploded. Had the target been sufficiently large, with no sections protected by intervening hills, the area of damage would have been about five times as large. An equivalent bomb load which would correspond to the destructive power of the Nagasaki bomb rather than the imperfect results achieved would approximate 2,200 tons of high explosives and incendiaries for physical damage plus 500 tons of fragmentation bombs for casualties, a total of 270 B-29 loads of 10 tons each.

Table: Radii of Effectiveness

Type of Bomb	Hiroshima	Nagasaki	Average Damage Radius
100-lb bomb	50 ft	110 ft	80 ft
300-lb bomb	500 ft	1,100 ft	250 ft
1,000-lb bomb	1,000 ft	1,100 ft	800 ft
Blockbuster	300 ft	1,500 ft	200 ft
30-ton bomb	500 ft	2,500 ft	800 ft
1,200-ton bomb	1,500 ft	3,000 ft	1,000 ft

Note: 1,000-ft radius is the maximum for the 30-ton bomb.
DESTRUCTION OF BUILDINGS WITH BRICK LOAD BEARING WALLS. Note how brick debris lies amidst wall being blown, a reminder of a bar rack in the Japanese Army Base. (1.) Raised Grounds, 2,500 feet from ground zero at Hiroshima. (2.) The A-bombe's Insurance Co., 1,500 feet from ground zero, is completely destroyed except for the heavy walls of the vault.

31
REINFORCED CONCRETE BUILDINGS WILL STAND—And note how the interior, as in the operating room at the Nagasaki University Hospital 1,200 feet from ground zero, are burned out. Fire has consumed the floor, the balance, and all Cres, and disturbed the metal railings and pipes.
IV. SIGNPOSTS

A. THE DANGER

The Survey's investigations, as they proceeded about their study, faced an insistent question framing itself in their minds: "What if the target for the bomb had been an American City?" True, the primary mission of the Survey was to ascertain the facts just summarized. But conclusions as to the meaning of those facts, for citizens of the United States, forced themselves almost inescapably on the minds of Hiroshima and Nagasaki. These conclusions have a different sort of validity from the measurable and ponderable facts of preceding sections, and therefore they are presented separately. They are not the least important part of this report, however, and they are stated with no less conviction.

No two cities, whether in Japan or the United States, are exactly alike. But the differences in terrain, layout and density, and type of construction can be allowed for one by one; when that is done, comparisons become possible. The most striking differences between American and Japanese cities is in residential districts: what happened in typical Japanese houses is not directly applicable to American residential districts. But in Japanese cities were many brick and wood-frame buildings of Western or similar design and of good workmanship. It was the opinion of the Survey's engineers, with their professional familiarity with American buildings, that these Japanese buildings reacted to the bomb much as typical American buildings would have. And these buildings were exceedingly vulnerable: multi-story brick buildings with load-bearing walls were destroyed or seriously damaged over an area of 16 square miles at Hiroshima, while similar one-story brick buildings were destroyed or seriously damaged within an area of 6 square miles. Wood-frame buildings built as industrial or commercial shops suffered similar damage in an area of over 8 miles, while Japanese residences were destroyed or seriously damaged within an area of 6 square miles. This was at Hiroshima, where the less powerful bomb was used.

These figures indicate what would happen to typical wood, brick, and stone structures in American cities. Modern reinforced concrete and steel-frame buildings would fare better here—as they did in Japan. But the following table shows how American cities are built, and how few buildings are of blast-resistant construction.

<table>
<thead>
<tr>
<th>City</th>
<th>Area destroyed (sq mi)</th>
<th>Wood</th>
<th>Brick</th>
<th>Stone</th>
<th>Other concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>14.8</td>
<td>10.7</td>
<td>4.5</td>
<td>0.6</td>
<td>0.1</td>
</tr>
<tr>
<td>Washington</td>
<td>10.5</td>
<td>6.8</td>
<td>3.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Chicago</td>
<td>20.0</td>
<td>11.4</td>
<td>8.0</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>San Francisco</td>
<td>30.1</td>
<td>11.1</td>
<td>12.1</td>
<td>0.5</td>
<td>6.4</td>
</tr>
</tbody>
</table>

Source: Miscellaneous Hearings of the United States (1946), vol. II.

The overwhelming bulk of the buildings in American cities could not stand up against an atomic bomb bursting a mile or a mile and a half from them.

And the people? We must not too readily discount the casualty rate because of the teeming populations of congested Japanese cities. American cities, too, have their crowded slums, and in addition tend to build vertically so that the density of the population is high in a given area even though each apartment dweller may have more living space than his Japanese equivalent.

Most of the population densities in this table are merely averages for people within a city limits. Most meaningful, therefore, are the figures for the central areas of Hiroshima and Nagasaki, and for the boroughs of New York. The casualty rates at Hiroshima and Nagasaki, applied to the named inhabitants of Manhattan, Brooklyn, and the Bronx, yield a grim conclusion. These casualty rates, it must never be forgotten, result from the first atomic bomb to be used and from bombs burst.
DAMAGE TO MACHINE TOOLS was usually indirect. As the Mitsubishi Steel and Arms Works, 1,200 feet from ground zero at Nagasaki, many closely packed machines received serious damage from collapsing roof trusses, but were exposed to the weather. Other machines were torn from their foundations by collapsing steel members.
at considerable distances above the ground. Improved bombs, perhaps detonated more effectively, may well prove still more deadly.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>7,042,600</td>
<td>6,925,000</td>
<td>7,042,600</td>
<td>7,093,000</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>3,400,000</td>
<td>3,250,000</td>
<td>3,400,000</td>
<td>3,525,000</td>
</tr>
<tr>
<td>Bangkok</td>
<td>1,009,000</td>
<td>975,000</td>
<td>1,103,000</td>
<td>1,209,000</td>
</tr>
<tr>
<td>Bombay</td>
<td>2,725,000</td>
<td>2,500,000</td>
<td>2,725,000</td>
<td>3,025,000</td>
</tr>
<tr>
<td>Calcutta</td>
<td>1,346,000</td>
<td>1,200,000</td>
<td>1,346,000</td>
<td>1,600,000</td>
</tr>
<tr>
<td>Canton</td>
<td>775,000</td>
<td>700,000</td>
<td>775,000</td>
<td>900,000</td>
</tr>
<tr>
<td>Shanghai</td>
<td>75,000</td>
<td>69,000</td>
<td>75,000</td>
<td>89,000</td>
</tr>
<tr>
<td>Tokyo</td>
<td>2,042,000</td>
<td>1,800,000</td>
<td>2,042,000</td>
<td>2,200,000</td>
</tr>
<tr>
<td>Peking</td>
<td>1,010,000</td>
<td>900,000</td>
<td>1,010,000</td>
<td>1,100,000</td>
</tr>
<tr>
<td>Hiroshima</td>
<td>1,000,000</td>
<td>900,000</td>
<td>1,000,000</td>
<td>1,100,000</td>
</tr>
<tr>
<td>Nagasaki</td>
<td>400,000</td>
<td>300,000</td>
<td>400,000</td>
<td>450,000</td>
</tr>
</tbody>
</table>

B. WHAT WE CAN DO ABOUT IT

The danger is real—if that, the Survey’s findings leave no doubt. Scattered through these findings, at the same time, are the clues to the measures that can be taken to cut down potential losses of lives and property. These measures must be taken with dispatch, if their cost is not to be prohibitive. But if a policy is laid down, well in advance of any crisis, it will enable timely decentralization of industrial and medical facilities, construction or blueprinting of shelters, and preparation for life-saving evacuation programs.

The almost unprotected, completely surprised cities of Japan suffered maximum losses from atomic bomb attacks. To recognize in advance the possible danger and act to forestall it, we shall at worst suffer minimum casualties and disruption.

Since modern science can be marshalled for the defense as well as the attack, there is reason to hope that protective weapons and techniques will be improved. Even protective devices and vestments, however, cannot be perfect guards against surprise or initial attack, or against the unlimited number of targets offered an enemy through the range and speed of modern weapons. In our planning for the future, if we are realistic, we will prepare to minimize the destructiveness of such attacks, and so organize the economic and administrative life of the Nation that no single or small group of successful attacks can paralyze the national organs. The foregoing description of the effectiveness of the atomic bomb has shown clearly that, despite its awesome power, it has limits of which wise planning will take prompt advantage.

1. Shelters.—The most instructive fact at Nagasaki was the survival, even when near ground zero, of the few hundred people who were properly placed in the tunnel shelters. Carefully built shelters, though unoccupied, stood up well in both cities. Without question, shelters can protect those who get to them against anything but a direct hit. Adequate warning will assure that a maximum number get to shelters.

Analysis of the protection of survivors within a few hundred feet of ground zero shows that shielding is possible even against gamma rays. At Hiroshima, for example, persons in a concrete building 3,600 feet from ground zero showed no clinical effect from gamma radiation, but those protected only by wooden buildings at a similar distance suffered from radiation disease. The necessary thickness varies with the substance and with the distance from the point of detonation. Adequate shelters can be built which will reduce substantially the casualties from radiation.

Men arriving at Hiroshima and Nagasaki have been constantly impressed by the shells of reinforced concrete buildings still rising above the rubble of brick and stone or the ashes of wooden buildings. In most cases gutted by fire or stripped of partitions and interior trim, these buildings have a double lesson for us. They show, first, that it is possible without expensive expense to erect buildings which will satisfactorily protect their contents at distances of about 2,000 feet or more from a bomb of the types so far employed. Construction of such buildings would be similar to earthquake resistant construction, which California experience indicates would cost about 10 percent to 15 percent more than conventional construction. Even against more powerful bombs or against near misses, such construction would diminish damage. Second, the internal damage illustrates the danger from interior details and construction which result in fire or flying debris in otherwise sound buildings. The elimination of combustible interiors and the provision of full-masonry partition...
HEAVY ELECTRICAL EQUIPMENT such as this turbo-generators at Minamisone-machi substation 7,700 feet from ground zero at Hiroshima, often survived the explosion.

SAGASAKI. Steel-framed building about 1,500 feet north of ground zero in Mitsubishi Steel and Arms Works distorted to grotesque shape by blast of bomb.
NAGASAKI SHELTERS. Tunnels (below) in the hillside, such as the one pictured here, were dug into ground near the sea, protecting the few occupants from blast, heat, and radiation.

HORIBA EARTH-AND-POLE AIR-RAID SHELTER. This simple shelter is undamaged by fire and blast, 3,000 feet northeast of ground zero, though surrounding buildings have been destroyed (Japanese photo, 10 August 1945).
walls, fire-resistent stair and elevator enclosures, and fire division walls would localize fires. Avoidance of glass, tile, earthen plaster or wood that would cut down damage from flying debris. The studies of the Physical Damage Division of the Survey support these recommendations and include many others.

The survival of sheltered sections of Nagasaki suggests forcefully the use that can be made of irregular terrain. Uneven ground reduces the speed and uniformity of blast effect. Terrain features such as rivers and parks afford natural firebreaks and avenues of escape.

2. Decentralization—Nagasaki and Hiroshima were chosen as targets because of their concentration of activities and population. The population density of 45,000 or more per square mile of built-up area explains in part the high casualty rate. Significant, therefore, is the fact that deaths at Nagasaki, despite the greater population density, were only half those at Hiroshima; the difference can be assigned in the main to the separation of the dispersed built-up pockets at Nagasaki, in contrast to the uniform concentration of the inhabitants in the heart of Hiroshima. The Nagasaki bomb thus dispersed much of its energy against hills, water, or unoccupied areas, while the Hiroshima bomb achieved almost optimum effect.

The fate of industries in both cities again illustrates the value of decentralization. All major factories in Hiroshima were on the periphery of the city—and escaped serious damage; at Nagasaki, plants and checkposts at the southern end of the city were left intact, but those in the valley where the bomb exploded were seriously damaged. So spread out were the industries in both cities that no single bomb could have been significantly more effective than the two actually dropped.

Medical facilities, crowded into the heart of the city rather than evenly spread through it, were crippled or wiped out by the explosion. Only the previous removal of some stocks of medical supplies from Hiroshima to nearby communities, and the bringing in of aid, enabled the limited medical attention of the first few days.

These results underline those in conventional area raids in Germany, where frequency the heart of a city was devastated while peripheral defenses were destroyed and where (particularly in Hamburg) destruction of medical facilities just at the time of greatest need hampered care of wounded.

The similar peril of American cities and the extent to which wise zoning has eliminated it differ from city to city. Though a reshaping and partial dispersal of the central cores of activity are drastic and difficult measures, they represent a social and military ideal toward which very practical steps can be taken; once the policy has been laid down in the location of plants, administrative headquarters, and hospitals, particularly, the value of decentralization is obvious, and can be obtained cheaply if the need is foreseen. For example, by wise selection of dispersed sites, the present hospital building program of the Veterans' Administration could be made to lessen our congestion without additional cost.

Reserve stocks of critical materials and of such products as medical supplies should be kept on hand. This principle of maintaining reserve supplies also to the capital equipment of the country. Key producing areas must not be served by a single source of power or channel of transportation. Indispensable materials must not come from processing plants of barely adequate capacity. Production of essential manufactured goods—civilian and military—must not be confined to a few or to geographically centralized plants. And the various regions of the country should be encouraged to approach balanced economic development as closely as is naturally possible. An enemy viewing our national economy must not find bottlenecks which use of the atomic bomb could choke off to throttle our productive capacity.

& Civilian defense—Because the scale of disaster would be certain to overwhelm the hospitals in which it occurs, mutual assistance organized on a national level is essential. Such national organization is by no means inconsistent with decentralization; indeed, it will be aided by the existence of the maximum number of nearly self-sustaining regions whose joint support it can coordinate. In addition, highly trained medical units skilled in and equipped for fire-fighting, rescue work, and clearance and repair should be trained for an emergency which disrupts local organization and exceeds its capability for control. Most important, a national civilian defense organization can prepare the plans for necessary steps in case of crisis. Two complementary programs which should be worked out in advance are those for evacuation of unnecessary inhabitants.
HIS STEEL FRAME BUILDING, 2,000 feet from ground zero at Hiroshima, had its first-story column buckle away from the building, dropping the second story to the ground. Contents still were destroyed by fire.

COLLAPSE OF REINFORCED CONCRETE BUILDING. Chicago Coal Transportation Co., 700 feet from ground zero at Hiroshima.
from threatened urban areas, and for rapid erection of adequate shelters for people who must remain.

4. **Active defense**—Protective measures can substantially reduce the degree of devastation from an atomic bomb and the rate of casualties. Yet if the possibility of atomic attack on us is accepted, we must accept also the fact that no defensive measure alone can long protect us. At best they can minimize our losses and preserve the functioning of the national community through initial or continuing partial attack. Against full and sustained attack they would be ineffective palliatives.

As defensive weapons, atomic bombs are useful primarily as warnings, as threats of retaliation which will restrain a potential aggressor from their use as from the use of poison gas or biological warfare. The mission of active defense, as of passive defense, is thus to prevent the surprise use of the atomic bomb from being decisive. A wise military establishment will make sure—by diplomacy, containment, protection, and constant readiness of its forces—that no single blow or series of blows from an enemy can cripple its ability to strike back in the same way or to equal accompanying attacks from other air, ground, or sea forces. The measures to enable this uncluttering state of readiness are not new; only their urgency is increased. Particularly in this test of the intelligence activities on which informed decisions and timely actions depend.

The need for research is not limited to atomic energy itself, but is equally important in propulsion, detection devices, and other techniques of countering and of delivering atomic weapons.

Also imperative is the testing of the weapon's potentials under varying conditions. The coming Operation Crossroads, for example, will give valuable data for defining more precisely what is already known about the atomic bomb's effectiveness when air-burst; more valuable, however, will be tests under new conditions, to provide sure information about detonations at water level or under water, as well as underground. While prediction of efforts under differing conditions of detonation may have a high degree of probability, verified knowledge is a much better basis for military planning.

5. **Conclusion**—One further measure of safety must accompany the others. Toward destruction, the surest way is to avoid war. This was the Survey's recommendation after viewing the rubble of German cities, and it holds equally true whether one remembers the ashes of Hiroshima or considers the vulnerability of American cities.

Our national policy has consistently had as one of its basic principles the maintenance of peace. Based on our ideals of justice and of peaceful development of our resources, this disinterested policy has been reinforced by our clear lack of anything to gain from war—even in victory. No more forceful arguments for peace and for the international machinery of peace than the sight of the devastation of Hiroshima and Nagasaki have ever been devised. As the developer and exploiter of this ominous weapon, our nation has a responsibility, which no American should shirk, to lead in establishing and implementing the international guarantees and controls which will prevent its future use.